Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 216
1.
Article En | MEDLINE | ID: mdl-38666365

The stimulus-responsive behavior of coordination networks (CNs), which switch between closed (nonporous) and open (porous) phases, is of interest because of its potential utility in gas storage and separation. Herein, we report two polymorphs of a new square-lattice (sql) topology CN, X-sql-1-Cu, of formula [Cu(Imibz)2]n (HImibz = {[4-(1H-imidazol-1-yl)phenylimino]methyl}benzoic acid), isolated from the as-synthesized CN X-sql-1-Cu-(MeOH)2·2MeOH, which subsequently transformed to a narrow pore solvate, X-sql-1-Cu-A·MeOH, upon mild activation (drying in air or heating at 333 K under nitrogen). X-sql-1-Cu-A·MeOH contains MeOH in cavities, which was removed through exposure to vacuum for 2 h, yielding the nonporous (closed) phase X-sql-1-Cu-A. In contrast, a more dense polymorph, X-sql-1-Cu-B, was obtained by exposing X-sql-1-Cu-(MeOH)2·2MeOH directly to vacuum for 2 h. Gas sorption studies conducted on X-sql-1-Cu-A and X-sql-1-Cu-B revealed different switching behaviors to two open phases (X-sql-1-Cu·CO2 and X-sql-1-Cu·C2H2), with different gate-opening threshold pressures for CO2 at 195 K and C2H2 at 278 K. Coincident CO2 sorption and in situ powder X-ray diffraction studies at 195 K revealed that X-sql-1-Cu-A transformed to X-sql-1-Cu-B after the first sorption cycle and that the CO2-induced switching transformation was thereafter reversible. The results presented herein provide insights into the relationship between two polymorphs of a CN and the effect of polymorphism upon gas sorption properties. To the best of our knowledge, whereas sql networks such as X-sql-1-Cu are widely studied in terms of their structural and sorption properties, this study represents only the second example of an in-depth study of the sorption properties of polymorphic sql networks.

2.
Cryst Growth Des ; 24(6): 2573-2579, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38525104

Porous coordination networks (PCNs) sustained by inorganic anions that serve as linker ligands can offer high selectivity toward specific gases or vapors in gas mixtures. Such inorganic anions are best exemplified by electron-rich fluorinated anions, e.g., SiF62-, TiF62-, and NbOF52-, although sulfate anions have recently been highlighted as inexpensive and earth-friendly alternatives. Herein, we report the use of a rare copper sulfate dimer molecular building block to generate two square lattice, sql, coordination networks which can be prepared via solvent layering or slurrying, CuSO4(1,4-bib)1.5, 1, (1,4-bib = 1,4-bisimidazole benzene) and CuSO4(1,4-bin)1.5, 2, (1,4-bin = 1,4-bisimidazole naphthalene). Variable-temperature SCXRD and PXRD experiments revealed that both sql networks underwent reversible structural transformations due to linker rotations or internetwork displacements. Gas sorption studies conducted upon the narrow-pore phase of CuSO4(1,4-bin)1.5, 2np, found a high calculated 1:99 selectivity for C2H2 over C2H4 (33.01) and CO2 (15.18), as well as strong breakthrough performance. Across-the-board, C3H4 selectivity vs C3H6, CO2, and C3H8 was also observed. Sulfate-based PCNs, although still understudied, appear increasingly likely to offer utility in gas and vapor separations.

3.
ACS Mater Lett ; 6(2): 666-673, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38333599

Switching coordination networks (CNs) that reversibly transform between narrow or closed pore (cp) and large pore (lp) phases, though fewer than their rigid counterparts, offer opportunities for sorption-related applications. However, their structural transformations and switching mechanisms remain underexplored at the molecular level. In this study, we conducted a systematic investigation into a 2D switching CN, [Ni(bpy)2(NCS)2]n, sql-1-Ni-NCS (1 = bpy = 4,4'-bipyridine), using coincident gas sorption and in situ powder X-ray diffraction (PXRD) under low-temperature conditions. Gas adsorption measurements revealed that C2H4 (169 K) and C2H6 (185 K) exhibited single-step type F-IVs sorption isotherms with sorption uptakes of around 180-185 cm3 g-1, equivalent to four sorbate molecules per formula unit. Furthermore, parallel in situ PXRD experiments provided insight into sorbate-dependent phase switching during the sorption process. Specifically, CO2 sorption induced single-step phase switching (path I) solely between cp and lp phases consistent with the observed single-step type F-IVs sorption isotherm. By contrast, intermediate pore (ip) phases emerged during C2H4 and C2H6 desorption as well as C3H6 adsorption, although they remained undetectable in the sorption isotherms. To our knowledge, such a cp-lp-ip-cp transformation (path II) induced by C2H4/6 and accompanied by single-step type F-IVs sorption isotherms represents a novel type of phase transition mechanism in switching CNs. By virtue of Rietveld refinements and molecular simulations, we elucidated that the phase transformations are governed by cooperative local and global structural changes involving NCS- ligand reorientation, bpy ligand twist and rotation, cavity edge (Ni-bpy-Ni) deformation, and interlayer expansion and sliding.

4.
J Am Chem Soc ; 146(6): 4153-4161, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38300827

Separating ethane (C2H6) from ethylene (C2H4) is an essential and energy-intensive process in the chemical industry. Here, we report two flexible diamondoid coordination networks, X-dia-1-Ni and X-dia-1-Ni0.89Co0.11, that exhibit gate-opening between narrow-pore (NP) and large-pore (LP) phases for C2H6, but not for C2H4. X-dia-1-Ni0.89Co0.11 thereby exhibited a type F-IV isotherm at 273 K with no C2H6 uptake and a high uptake (111 cm3 g-1, 1 atm) for the NP and LP phases, respectively. Conversely, the LP phase exhibited a low uptake of C2H4 (12.2 cm3 g-1). This C2H6/C2H4 uptake ratio of 9.1 for X-dia-1-Ni0.89Co0.11 far surpassed those of previously reported physisorbents, many of which are C2H4-selective. In situ variable-pressure X-ray diffraction and modeling studies provided insight into the abrupt C2H6-induced structural NP to LP transformation. The promise of pure gas isotherms and, more generally, flexible coordination networks for gas separations was validated by dynamic breakthrough studies, which afforded high-purity (99.9%) C2H4 in one step.

5.
ACS Mater Lett ; 6(1): 56-65, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38178981

Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.

6.
ACS Appl Mater Interfaces ; 16(4): 4803-4810, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38258417

Hybrid ultramicroporous materials (HUMs), metal-organic platforms that incorporate inorganic pillars, are a promising class of porous solids. A key area of interest for such materials is gas separation, where HUMs have already established benchmark performances. Thanks to their ready compositional modularity, we report the design and synthesis of a new HUM, GEFSIX-21-Cu, incorporating the ligand pypz (4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, 21) and GeF62- pillaring anions. GEFSIX-21-Cu delivers on two fronts: first, it displays an exceptionally high C2H2 adsorption capacity (≥5 mmol g-1) which is paired with low uptake of CO2 (<2 mmol g-1), and, second, a low enthalpy of adsorption for C2H2 (ca. 32 kJ mol-1). This combination is rarely seen in the C2H2 selective physisorbents reported thus far, and not observed in related isostructural HUMs featuring pypz and other pillaring anions. Dynamic column breakthrough experiments for 1:1 and 2:1 C2H2/CO2 mixtures revealed GEFSIX-21-Cu to selectively separate C2H2 from CO2, yielding ≥99.99% CO2 effluent purities. Temperature-programmed desorption experiments revealed full sorbent regeneration in <35 min at 60 °C, reinforcing HUMs as potentially technologically relevant materials for strategic gas separations.

7.
Nat Mater ; 23(1): 39-40, 2024 Jan.
Article En | MEDLINE | ID: mdl-38135814
8.
J Am Chem Soc ; 145(50): 27316-27324, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38055597

High and increasing production of separation of C8 aromatic isomers demands the development of purification methods that are efficient, scalable, and inexpensive, especially for p-xylene, PX, the largest volume C8 commodity. Herein, we report that 4-(1H-1,2,4-triazol-1-yl)-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (TPBD), a molecular compound that can be prepared and scaled up via solid-state synthesis, exhibits exceptional PX selectivity over each of the other C8 isomers, o-xylene (OX), m-xylene (MX), and ethylbenzene (EB). The apohost or α form of TPBD was found to exhibit conformational polymorphism in the solid state enabled by rotation of its triazole and benzene rings. TPBD-αI and TPBD-αII are nonporous polymorphs that transformed to the same PX inclusion compound, TPBD-PX, upon contact with liquid PX. TPBD enabled highly selective capture of PX, as established by competitive slurry experiments involving various molar ratios in binary, ternary, and quaternary mixtures of C8 aromatics. Binary selectivity values for PX as determined by 1H NMR spectroscopy and gas chromatography ranged from 22.4 to 108.4, setting new benchmarks for both PX/MX (70.3) and PX/EB (59.9) selectivity as well as close to benchmark selectivity for PX/OX (108.4). To our knowledge, TPBD is the first material of any class to exhibit such high across-the-board PX selectivity from quaternary mixtures of C8 aromatics under ambient conditions. Crystallographic and computational studies provide structural insight into the PX binding site in TPBD-PX, whereas thermal stability and capture kinetics were determined by variable-temperature powder X-ray diffraction and slurry tests, respectively. That TPBD offers benchmark PX selectivity and facile recyclability makes it a prototypal molecular compound for PX purification or capture under ambient conditions.

9.
Chem Mater ; 35(23): 10001-10008, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38107195

Separation of the C8 aromatic isomers, xylenes (PX, MX, and OX) and ethylbenzene (EB), is important to the petrochemical industry. Whereas physisorptive separation is an energy-efficient alternative to current processes, such as distillation, physisorbents do not generally exhibit strong C8 selectivity. Herein, we report the mixed-linker square lattice (sql) coordination network [Zn2(sba)2(bis)]n·mDMF (sql-4,5-Zn, H2sba or 4 = 4,4'-sulfonyldibenzoic acid, bis or 5 = trans-4,4'-bis(1-imidazolyl)stilbene) and its C8 sorption properties. sql-4,5-Zn was found to exhibit high uptake capacity for liquid C8 aromatics (∼20.2 wt %), and to the best of our knowledge, it is the first sorbent to exhibit selectivity for PX, EB, and MX over OX for binary, ternary, and quaternary mixtures from gas chromatography. Single-crystal structures of narrow-pore, intermediate-pore, and large-pore phases provided insight into the phase transformations, which were enabled by flexibility of the linker ligands and changes in the square grid geometry and interlayer distances. This work adds to the library of two-dimensional coordination networks that exhibit high uptake, thanks to clay-like expansion, and strong selectivity, thanks to shape-selective binding sites, for C8 isomers.

10.
J Mater Chem A Mater ; 11(30): 16019-16026, 2023 Aug 02.
Article En | MEDLINE | ID: mdl-38013758

Compared to rigid physisorbents, switching coordination networks that reversibly transform between closed (non-porous) and open (porous) phases offer promise for gas/vapour storage and separation owing to their improved working capacity and desirable thermal management properties. We recently introduced a coordination network, X-dmp-1-Co, which exhibits switching enabled by transient porosity. The resulting "open" phases are generated at threshold pressures even though they are conventionally non-porous. Herein, we report that X-dmp-1-Co is the parent member of a family of transiently porous coordination networks [X-dmp-1-M] (M = Co, Zn and Cd) and that each exhibits transient porosity but switching events occur at different threshold pressures for CO2 (0.8, 2.1 and 15 mbar, for Co, Zn and Cd, respectively, at 195 K), H2O (10, 70 and 75% RH, for Co, Zn and Cd, respectively, at 300 K) and CH4 (<2, 10 and 25 bar, for Co, Zn and Cd, respectively, at 298 K). Insight into the phase changes is provided through in situ SCXRD and in situ PXRD. We attribute the tuning of gate-opening pressure to differences and changes in the metal coordination spheres and how they impact dpt ligand rotation. X-dmp-1-Zn and X-dmp-1-Cd join a small number of coordination networks (<10) that exhibit reversible switching for CH4 between 5 and 35 bar, a key requirement for adsorbed natural gas storage.

11.
Chem Commun (Camb) ; 59(93): 13867-13870, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37930365

Herein, we introduce a new square lattice topology coordination network, sql-(1,3-bib)(ndc)-Ni, with three types of connection and detail its gas and vapour induced phase transformations. Exposure to humidity resulted in an S-shaped isotherm profile, suggesting potential utility of such materials as desiccants.

12.
Cryst Growth Des ; 23(11): 8139-8146, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37937187

Chiral metal-organic materials, CMOMs, are of interest as they can offer selective binding sites for chiral guests. Such binding sites can enable CMOMs to serve as chiral crystalline sponges (CCSs) to determine molecular structure and/or purify enantiomers. We recently reported on the chiral recognition properties of a homochiral cationic diamondoid, dia, network {[Ni(S-IDEC)(bipy)(H2O)][NO3]}n (S-IDEC = S-indoline-2-carboxylicate, bipy = 4,4'-bipyridine), CMOM-5[NO3]. The modularity of CMOM-5[NO3] means there are five feasible approaches to fine-tune structures and properties via substitution of one or more of the following components: metal cation (Ni2+); bridging ligand (S-IDEC); linker (bipy); extra-framework anion (NO3-); and terminal ligand (H2O). Herein, we report the effect of anion substitution on the CCS properties of CMOM-5[NO3] by preparing and characterizing {[Ni(S-IDEC)(bipy)(H2O)][BF4]}n, CMOM-5[BF4]. The chiral channels in CMOM-5[BF4] enabled it to function as a CCS for determination of the absolute crystal structures of both enantiomers of three chiral compounds: 1-phenyl-1-butanol (1P1B); methyl mandelate (MM); ethyl mandelate (EM). Chiral resolution experiments revealed CMOM-5[BF4] to be highly selective toward the S-isomers of MM and EM with enantiomeric excess, ee, values of 82.6 and 78.4%, respectively. The ee measured for S-EM surpasses the 64.3% exhibited by [DyNaL(H2O)4] 6H2O and far exceeds that of CMOM-5[NO3] (6.0%). Structural studies of the binding sites in CMOM-5[BF4] provide insight into their high enantioselectivity.

13.
Angew Chem Int Ed Engl ; 62(47): e202309985, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37770385

We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, ß, phases during activation. ß did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to ß after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN .

14.
ACS Mater Lett ; 5(9): 2567-2575, 2023 Sep 04.
Article En | MEDLINE | ID: mdl-37680544

Gas or vapor-induced phase transformations in flexible coordination networks (CNs) offer the potential to exceed the performance of their rigid counterparts for separation and storage applications. However, whereas ligand modification has been used to alter the properties of such stimulus-responsive materials, they remain understudied compared with their rigid counterparts. Here, we report that a family of Zn2+ CNs with square lattice (sql) topology, differing only through the substituents attached to a linker, exhibit variable flexibility. Structural and CO2 sorption studies on the sql networks, [Zn(5-Ria)(bphy)]n, ia = isophthalic acid, bphy = 1,2-bis(pyridin-4-yl)hydrazine, R = -CH3, -OCH3, -C(CH3)3, -N=N-Ph, and -N=N-Ph(CH3)2, 2-6, respectively, revealed that the substituent moieties influenced both structural and gas sorption properties. Whereas 2-3 exhibited rigidity, 4, 5, and 6 exhibited reversible transformation from small pore to large pore phases. Overall, the insight into the profound effect of pendent moieties of linkers upon phase transformations in this family of layered CNs should be transferable to other CN classes.

15.
Cryst Growth Des ; 23(8): 6059-6066, 2023 Aug 02.
Article En | MEDLINE | ID: mdl-37547881

Quercetin (QUE) is a widely studied nutraceutical with a number of potential therapeutic properties. Although QUE is abundant in the plant kingdom, its poor solubility (≤20 µg/mL) and poor oral bioavailability have impeded its potential utility and clinical development. In this context, cocrystallization has emerged as a useful method for improving the physicochemical properties of biologically active molecules. We herein report a novel cocrystal of the nutraceutical quercetin (QUE) with the coformer pentoxifylline (PTF) and a solvate of a previously reported structure between QUE and betaine (BET). We also report the outcomes of in vitro and in vivo studies of QUE release and absorption from a panel of QUE cocrystals: betaine (BET), theophylline (THP), l-proline (PRO), and novel QUEPTF. All cocrystals were found to exhibit an improvement in the dissolution rate of QUE. Further, the QUE plasma levels in Sprague-Dawley rats showed a 64-, 27-, 10- and 7-fold increase in oral bioavailability for QUEBET·MeOH, QUEPTF, QUEPRO, and QUETHP, respectively, compared to QUE anhydrate. We rationalize our in vivo and in vitro findings as the result of dissolution-supersaturation-precipitation behavior.

16.
Cryst Growth Des ; 23(7): 5211-5220, 2023 Jul 05.
Article En | MEDLINE | ID: mdl-37426545

Chiral metal-organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO3)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H2O)][NO3], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2-93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host-guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE.

17.
CrystEngComm ; 25(29): 4175-4181, 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37492238

Bifunctional N-donor carboxylate linkers generally afford dia and sql topology coordination networks of general formula ML2 that are based upon the MN2(CO2)2 molecular building block (MBB). Herein, we report on a new N-donor carboxylate linker, ß-(3,4-pyridinedicarboximido)propionate (PyImPr), which afforded Cd(PyImPr)2via reaction of PyImPrH with Cd(acetate)2·2H2O. We observed that, depending upon whether Cd(PyImPr)2 was prepared by layering or solvothermal methods, 2D or 3D supramolecular isomers, respectively, of Cd(PyImPr)2 were isolated. Single crystal X-ray diffraction studies revealed that both supramolecular isomers are comprised of the same carboxylate bridged rod building block, RBB. We were interested to determine if the ethylene moiety of PyImPr could enable structural flexibility. Indeed, open-to-closed structural transformations occurred upon solvent removal for both phases, but they were found to be irreversible. A survey of the Cambridge Structural Database (CSD) was conducted to analyse the relative frequency of RBB topologies in related ML2 coordination networks in order to provide insight from a crystal engineering perspective.

18.
Angew Chem Int Ed Engl ; 62(42): e202307436, 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37319321

The 3D hybrid framework [{Cu(cyclam)}3 (κ-Mo8 O27 )] ⋅ 14H2 O (1) (cyclam=1,4,8,11-tetraazacyclotetradecane) undergoes sequential single-crystal-to-single-crystal transformations upon heating to afford two different anhydrous phases (2 a and 3 a). These transitions modify the framework dimensionality and enable the isomerization of κ-octamolybdate (κ-Mo8 ) anions into λ (2 a) and µ (3 a) forms through metal migration. Hydration of 3 a involves condensation of one water molecule to the cluster to afford the γ-Mo8 isomer in 4, which dehydrates back into 3 a through the 6 a intermediate. In contrast, 2 a reversibly hydrates to form 5, exhibiting the same Mo8 cluster as that of 1. It is remarkable that three of the Mo8 clusters (κ, λ and µ) are new and that up to three different microporous phases can be isolated from 1 (2 a, 3 a, and 6 a). Water vapor sorption analyses show high recyclability and the highest uptake values for POM-based systems. The isotherms display an abrupt step at low humidity level desirable for humidity control devices or water harvesting in drylands.

19.
J Mater Chem A Mater ; 11(17): 9691-9699, 2023 May 02.
Article En | MEDLINE | ID: mdl-37153821

In this work, we report the synthesis, structural characterisation and sorption properties of an 8-fold interpenetrated diamondoid (dia) metal-organic framework (MOF) that is sustained by a new extended linker ligand, [Cd(Imibz)2], X-dia-2-Cd, HImibz or 2 = 4-((4-(1H-imidazol-1-yl)phenylimino)methyl)benzoic acid. X-dia-2-Cd was found to exhibit reversible single-crystal-to-single-crystal (SC-SC) transformations between four distinct phases: an as-synthesised (from N,N-dimethylformamide) wide-pore phase, X-dia-2-Cd-α; a narrow-pore phase, X-dia-2-Cd-ß, formed upon exposure to water; a narrow-pore phase obtained by activation, X-dia-2-Cd-γ; a medium-pore CO2-loaded phase X-dia-2-Cd-δ. While the space group remained constant in the four phases, the cell volumes and calculated void space ranged from 4988.7 Å3 and 47% (X-dia-2-Cd-α), respectively, to 3200.8 Å3 and 9.1% (X-dia-2-Cd-γ), respectively. X-dia-2-Cd-γ also exhibited a water vapour-induced structural transformation to the water-loaded X-dia-2-Cd-ß phase, resulting in an S-shaped sorption isotherm. The inflection point occurred at 18% RH with negligible hysteresis on the desorption profile. Water vapour temperature-humidity swing cycling (60% RH, 300 K to 0% RH, 333 K) indicated hydrolytic stability of X-dia-2-Cd and working capacity was retained after 128 cycles of sorbent regeneration. CO2 (at 195 K) was also observed to induce a structural transformation in X-dia-2-Cd-γ and in situ PXRD studies at 1 bar of CO2, 195 K revealed the formation of X-dia-2-Cd-δ, which exhibited 31% larger unit cell volume than X-dia-2-Cd-γ.

20.
Chem Mater ; 35(9): 3660-3670, 2023 May 09.
Article En | MEDLINE | ID: mdl-37181677

In this work, we present the first metal-organic framework (MOF) platform with a self-penetrated double diamondoid (ddi) topology that exhibits switching between closed (nonporous) and open (porous) phases induced by exposure to gases. A crystal engineering strategy, linker ligand substitution, was used to control gas sorption properties for CO2 and C3 gases. Specifically, bimbz (1,4-bis(imidazol-1-yl)benzene) in the coordination network X-ddi-1-Ni ([Ni2(bimbz)2(bdc)2(H2O)]n, H2bdc = 1,4-benzenedicarboxylic acid) was replaced by bimpz (3,6-bis(imidazol-1-yl)pyridazine) in X-ddi-2-Ni ([Ni2(bimpz)2(bdc)2(H2O)]n). In addition, the 1:1 mixed crystal X-ddi-1,2-Ni ([Ni2(bimbz)(bimpz)(bdc)2(H2O)]n) was prepared and studied. All three variants form isostructural closed (ß) phases upon activation which each exhibited different reversible properties upon exposure to CO2 at 195 K and C3 gases at 273 K. For CO2, X-ddi-1-Ni revealed incomplete gate-opening, X-ddi-2-Ni exhibited a stepped isotherm with saturation uptake of 3.92 mol·mol-1, and X-ddi-1,2-Ni achieved up to 62% more gas uptake and a distinct isotherm shape vs the parent materials. Single-crystal X-ray diffraction (SCXRD) and in situ powder X-ray diffraction (PXRD) experiments provided insight into the mechanisms of phase transformation and revealed that the ß phases are nonporous with unit cell volumes 39.9, 40.8, and 41.0% lower than the corresponding as-synthesized α phases, X-ddi-1-Ni-α, X-ddi-2-Ni-α, and X-ddi-1,2-Ni-α, respectively. The results presented herein represent the first report of reversible switching between closed and open phases in ddi topology coordination networks and further highlight how ligand substitution can profoundly impact the gas sorption properties of switching sorbents.

...